
CNT 4714: PHP – Part 3 - Arrays Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2011

Introduction to PHP – Part 3 - Arrays

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cnt4714/fall2011

CNT 4714: PHP – Part 3 - Arrays Page 2 Dr. Mark Llewellyn ©

Arrays In PHP

• Most of our PHP examples to this point have involved scalar

variables (we did see a couple of example in the first section

of notes that made use of one of PHP’s global associative

arrays).

• Scalar variables can only hold a single value at a time. For

example, a variable $color could hold only a single value

such as red, at any point in time. The variable could not be

used to hold more than one color.

• Arrays are special types of variables that enable you to store

as many values as you want.

Note: Although you can technically make an array as large as you’d like, some built-in array handling

functions in PHP have an upper limit of 100,000 values. If you are storing more data that this in your

arrays and you need to use one of these functions, you will either need to write your own function or split

the data into multiple arrays.

CNT 4714: PHP – Part 3 - Arrays Page 3 Dr. Mark Llewellyn ©

Arrays In PHP

• Arrays are indexed, which means that each entry in the array,

called an element, is made up of a key and a value.

• The key is the index position, beginning with 0 and

increasing incrementally by 1 with each new element in the

array.

• The value is whatever value you associate with that position

– a string, an integer, or whatever you want.

• In PHP you can think of an array as a filing cabinet and each

key/value pair as a file folder. The key is the label written on

the tab of the folder, and the value is what is inside. What’s

inside each folder can vary from folder to folder.

CNT 4714: PHP – Part 3 - Arrays Page 4 Dr. Mark Llewellyn ©

Creating Arrays In PHP

• You can create an array using either the array() function

or the array operator [].

• The array() function is usually used when you want to

create a new array and populate it with more than one

element, all at the same time.

• The array operator is more often used when you want to

create a new array with just one element at the outset or

when you want to add to an existing array element.

• The examples on the following couple of pages illustrate

creating an array in PHP using these two techniques.

CNT 4714: PHP – Part 3 - Arrays Page 5 Dr. Mark Llewellyn ©

This version uses the
array() function to create

the array.

CNT 4714: PHP – Part 3 - Arrays Page 6 Dr. Mark Llewellyn ©

This version uses the array operator [] to

create the array.

Note that no index values are specified,

PHP will auto number for you

CNT 4714: PHP – Part 3 - Arrays Page 7 Dr. Mark Llewellyn ©

This version also uses the array operator

[] to create the array.

Note that index values are specified in

this case.

CNT 4714: PHP – Part 3 - Arrays Page 8 Dr. Mark Llewellyn ©

Creating Arrays In PHP

• As shown in the example on page 6, PHP can automatically

index the array for you when you use the [] operator to

create the array.

• This is useful in that it eliminates the possibility that you

might misnumber the elements. The example on the next

page illustrates what happens if you misnumber the elements

in an array.

CNT 4714: PHP – Part 3 - Arrays Page 9 Dr. Mark Llewellyn ©

Misnumbering starts here

with no element 4 defined

and then 6 too is missed.

CNT 4714: PHP – Part 3 - Arrays Page 10 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 3 - Arrays Page 11 Dr. Mark Llewellyn ©

Creating Associative Arrays In PHP

• The arrays we’ve seen so far have been numerically indexed,

meaning that they use an integer index position as the key.

• Associative arrays utilize actual named keys. In PHP, the

named keys of an associative array are character strings

rather than numerical values. The string value is used to look

up or provide a cross-reference to the data value.

• The following example creates an associative array named

$instructor with three elements.

 $instructor[“CNT 4714”] = “Llewellyn”;

 $instructor[“CIS 3003”] = “Eisler”;

 $instructor[“CIS 3360”] = “Guha”;

CNT 4714: PHP – Part 3 - Arrays Page 12 Dr. Mark Llewellyn ©

Creating Associative Arrays In PHP

• The same array could also be created using the array()

function instead of the array operator []. This is shown

below:

 $instructor = array (“CNT 4714” => “Llewellyn”,

“CIS 3003” => “Eisler”, “CIS 3360” => “Guha”);

• When using the array() function, items are assigned in

index/value pairs using the => operator.

• When you want to access an item in an associative array, a

syntax similar to that used with sequential (numerically

indexed) arrays is employed, however, a string value or

variable is used for the index.

CNT 4714: PHP – Part 3 - Arrays Page 13 Dr. Mark Llewellyn ©

Creating Associative Arrays In PHP

• Suppose you wanted to retrieve the instructor for CIS 4004.

The following expression would achieve this:

 $teacher = $instructor[“CNT 4714”];

• The variable $teacher would be assigned the data value

associated with “CNT 4714” which would be “Llewellyn”.

Note: You might be tempted to do the following with an associative array, where you are

trying to determine which course is taught by the instructor named “Llewellyn”:

$course = $instructor[“Llewellyn”];

Don’t do this! An associative array can fetch data values only via the keys and not the

values associated with the keys. Therefore, it cannot find and entry in the array with an

index value of “Llewellyn” and will return nothing and the value of $course will be

undefined. The example on the following page illustrates this.

CNT 4714: PHP – Part 3 - Arrays Page 14 Dr. Mark Llewellyn ©

Incorrect Version

CNT 4714: PHP – Part 3 - Arrays Page 15 Dr. Mark Llewellyn ©

Correct Version

CNT 4714: PHP – Part 3 - Arrays Page 16 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• A common iterative statement used with both sequential and

associative arrays is the foreach statement.

• The general syntax of the foreach statement is:

 foreach (arrayname as variable) {

 . . . Statements to repeat

 }

• The first variable inside the parentheses is the variable name

representing the array and the second variable is automatically

set to the next array item at each iteration of the loop. An

example using a sequential array is shown on the next page and

one with an associative array on the following page.

CNT 4714: PHP – Part 3 - Arrays Page 17 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 3 - Arrays Page 18 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 3 - Arrays Page 19 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• Changing values, adding elements, deleting elements, and

verifying an element are all among the common operations

that you’ll need to perform on an associative array.

• Changing an existing value is done through simple

assignment. For example, to update the number of monitors

in the previous example from 23 to 5, the following

statement would be used: $inventory[“monitors”] = 5;

• To add a new element to an associative array, use the array

operator [] as in: $inventory[“keyboards”] = 12;

• Deleting an element from an associative array is done using

the unset() function.

CNT 4714: PHP – Part 3 - Arrays Page 20 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 3 - Arrays Page 21 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• To verify if a particular index exists in an associative array,

use the isset() function.

• The isset() function returns true if index passed as an

argument appears in the associative array and false

otherwise.

• The example on the following page illustrates using the

isset() function.

CNT 4714: PHP – Part 3 - Arrays Page 22 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 3 - Arrays Page 23 Dr. Mark Llewellyn ©

Using Associative Arrays In PHP

• As with many things in PHP, associative array indices are

case-sensitive. Thus, in the previous example, if the call to

the isset() function were passed the parameter

“Monitors” instead of “monitors” it would return false

instead of true.

• See next page.

CNT 4714: PHP – Part 3 - Arrays Page 24 Dr. Mark Llewellyn ©

CNT 4714: PHP – Part 3 - Arrays Page 25 Dr. Mark Llewellyn ©

Sorting Associative Arrays In PHP

• PHP has a special set of functions for sorting associative arrays.

• The asort() function sorts an associative array and

maintains the relationship between the indices and the values.

The sort is based upon the values in the associative array passed

as an argument to the function. The sort order is ascending

based on the value. The arsort() function sorts in

descending order based on value.

• The ksort() function is similar to the asort() function

but it sorts an associative array using the indices (in ascending
order) as the sort field. The krsort() function sorts in

descending order using the indices.

• These various sort functions are shown on the next few pages.

CNT 4714: PHP – Part 3 - Arrays Page 26 Dr. Mark Llewellyn ©

Using asort()

CNT 4714: PHP – Part 3 - Arrays Page 27 Dr. Mark Llewellyn ©

Using arsort()

CNT 4714: PHP – Part 3 - Arrays Page 28 Dr. Mark Llewellyn ©

Using ksort()

CNT 4714: PHP – Part 3 - Arrays Page 29 Dr. Mark Llewellyn ©

Using krsort()

CNT 4714: PHP – Part 3 - Arrays Page 30 Dr. Mark Llewellyn ©

Using Multidimensional Arrays In PHP

• Some data are best represented by creating a list of lists (a

multidimensional array).

• Consider the following table listing the inventory for a

hardware store:

• The example on the next page represents this data in a two-

dimensional associative array.

Part Number Part Name Count Price

AC1000 Hammer 122 28.50

AC1001 Wrench 25 14.00

AC1002 Saw 18 25.00

AC1003 Screwdriver 34 4.50

CNT 4714: PHP – Part 3 - Arrays Page 31 Dr. Mark Llewellyn ©

Front-end

Provides a set of radio buttons for user to select the

part they’d like to see more information about.

CNT 4714: PHP – Part 3 - Arrays Page 32 Dr. Mark Llewellyn ©

PHP script to find the correct entry in the associative array

based on the user’s selection, then display the associative array

entries for that item.

CNT 4714: PHP – Part 3 - Arrays Page 33 Dr. Mark Llewellyn ©

1. User selects

a part number

2. PHP script displays

part details.

